Коллектив авторов — Физика в бою

Тут можно читать онлайн книгу Коллектив авторов - Физика в бою - бесплатно полную версию (целиком). Жанр книги: Физика. Вы можете прочесть полную версию (весь текст) онлайн без регистрации и смс на сайте Lib-King.Ru (Либ-Кинг) или прочитать краткое содержание, аннотацию (предисловие), описание и ознакомиться с отзывами (комментариями) о произведении.

Физика в бою
Количество страниц: 35
Язык книги: Русский
Издатель: Воениздат
Город печати: Москва
Год печати: 1967
Прочитал книгу? Поставь оценку!
0 0

Физика в бою краткое содержание

Физика в бою - описание и краткое содержание, автор Коллектив авторов, читать бесплатно онлайн на сайте электронной библиотеки Lib-King.Ru.

В книге коллектива авторов в живой, популярной форме рассказывается о том, какую важную роль играет физика в современном военном деле, как используются ее достижения для дальнейшего развития ракетно-ядерного оружия, повышения боевых возможностей сухопутных войск, авиации и военно-морского флота Авторы показывают, что без знания основ физики сейчас невозможно плодотворно изучать и квалифицированно использовать боевую технику и вооружение, видеть, в каком направлении идет их прогресс. Встречаясь с известными еще со школьной скамьи физическими законами, читатель узнает, каких интересных и зачастую необычных результатов добиваются ученые и инженеры, используя эти законы для решения сложных проблем современного боя Читатель познакомится с новейшими военно-техническими достижениями, родившимися на основе использования успехов физики, ее тесного контакта с техническими науками. Редактор-составитель инженер-подполковник Жуков В.Н.

Физика в бою - читать онлайн бесплатно полную версию (весь текст целиком)

Физика в бою - читать книгу онлайн бесплатно, автор Коллектив авторов

Не следует, однако, думать, что физика открывает простор лишь для создания ядерных средств нападения. Использование иных открытых ею закономерностей дает возможность разрабатывать и эффективные средства защиты от поражающих факторов ядерного взрыва. Как это делается, рассмотрим на примере одного из таких факторов — светового излучения.

Если верить легенде, свет стал оружием еще в глубокой древности. До наших дней дошло предание о том, что якобы Архимед сжег неприятельский флот при помощи системы вогнутых зеркал — он будто бы концентрировал ими солнечные лучи, направляя на римские корабли. Правда, расчеты показывают, что возможность такого события маловероятна. Практически зажечь что-либо подобным путем можно на расстоянии, не более чем в десять раз превышающем размеры вогнутого зеркала. Однако древнее пророчество сбылось: свет все-таки сделался оружием. Но им стал не усиленный свет солнца, то есть собранные в одну точку солнечные лучи, а световая вспышка «ярче тысячи солнц» — ядерный взрыв.

На долю светового излучения ядерного взрыва приходится значительная часть всей выделяемой энергии — примерно 35%. Во время ядерной вспышки образуется светящаяся область, которая испускает, подобно солнцу, излучения в видимой, инфракрасной и ультрафиолетовой части электромагнитного спектра. Чем мощнее заряд, тем больше размеры этой светящейся сферы. В иностранной печати сообщалось, что при воздушном взрыве боеприпаса мощностью 1 мгт радиус сферы достигает 885 м, а при заряде в 10 мгт — около 2780 м.

Световое излучение может наносить поражение людям на больших расстояниях от эпицентра. Так, при хорошей прозрачности атмосферы взрыв мощностью 1 мгт, как сообщалось в зарубежной печати, способен нанести ожоги второй степени людям на расстоянии до 18 км, а взрыв мощностью 10 мгт — до 35 км. Заметим, что слова «при хорошей прозрачности атмосферы» сказаны здесь не случайно. Состояние атмосферы играет существенную роль в распространении светового излучения и воздействии его на людей и технику. Не меньшее значение имеет и то, какие материалы встречает свет на своем пути: из чего, например, изготовлена одежда солдат и офицеров. При решении этих вопросов и в первом и во втором случае на помощь специалистам приходит знание законов физики и их рациональное использование. Рассмотрим эти проблемы так, как они освещаются в зарубежной печати. Для начала проследим путь светового луча, ядерного взрыва в атмосфере, а потом взаимодействие его с одеждой человека и другими материалами.

Итак, преграда первая — атмосфера. Она представляет собой среду, состоящую из сложной смеси газов (азота, кислорода, аргона и углекислого газа), водяного пара и твердых частиц (пыли, дыма, сажи). Если количество газов в атмосфере практически неизменно, то количество других примесей может сильно меняться в зависимости от метеорологических условий и географического положения.

Проходя сквозь атмосферу, световое излучение испытывает двоякую потерю — от рассеяния и поглощения. В первом случае частицы, находящиеся в атмосфере, отклоняют лучи от первоначального направления, во втором — лучистая энергия переходит в другие виды энергии, но главным образом — в тепловую. Учет ослабления светового излучения в атмосфере представляет собой сложную задачу. Для его количественной оценки на практике пользуются коэффициентом прозрачности, под которым понимают отношение количества световой энергии, прошедшей через слой атмосферы толщиной 1 км, к энергии, вступившей в этот слой.

Обычно коэффициент прозрачности связывают с дальностью видимости больших темных предметов над горизонтом в дневное время, которая определяется метеорологическими условиями. Например, при дальности видимости 16 км (городские условия) на расстоянии 1 км от центра взрыва коэффициент прозрачности равен 0,8, а на расстоянии 6,1 км от центра взрыва — 0,55. При дальности видимости 80 км (очень ясная погода) на этих же расстояниях коэффициенты прозрачности соответственно равны 0,90 и 0,75.

Сильную преграду на пути распространения световых лучей создают плотные туманы, и особенно облака. При толщине облака 700–800 м отражается примерно 75–80 % падающего на него светового излучения. Средний коэффициент отражения облаков, рассчитанный с учетом их распространенности, форм и толщины, составляет около 50–55 %.

Таким образом, естественные туманы и облака оказывают на световое излучение взрыва существенное ослабляющее воздействие. Однако наличие, их над полем боя, районом сосредоточения войск или каким-либо объектом — явление случайное. Естественно, возник вопрос: нельзя ли туманы и облака создать искусственно, когда это необходимо в прямых целях защиты от светового излучения?

За рубежом проводились специальные опыты с искусственными дымовыми завесами, чтобы выявить степень ослабления ими светового излучения. За 10 минут до ядерного взрыва с помощью дымовых машин производился дымопуск. Образовавшийся масляный туман ослабил воздействие светового излучения на различную технику на 65–90 % в зависимости от расстояния до эпицентра взрыва. По заключению американских военных специалистов, световой импульс в зоне значительного избыточного давления был снижен благодаря дымовой завесе до 3 кал/см2. Эта величина импульса считается порогом средней тяжести ожогов открытых участков тела и воспламенения горючих материалов. Плотность поставленной дымовой завесы при расходе масла 440–620 л на 1 км2 примерно соответствовала плотности дымов, используемой для маскировки. Однако считается, что для достижения эффективного ослабления светового излучения концентрация дыма должна быть увеличена по сравнению с указанной в 1,5–2 раза. Ставились опыты и с другими дымами, которые в ряде случаев оказались эффективнее масляных туманов.

Проводятся также опыты по быстрой постановке дымовых завес. Обычно для этого используются выливные приборы, подвешиваемые к самолетам. Принцип действия одного из таких приборов, описанный в печати, заключается в следующем. Прибор заполняется жидкой дымовой смесью и большим количеством полых алюминиевых шариков. При опорожнении прибора часть дыма образуется на высоте полета самолета, а другая — на разных высотах благодаря разбрызгиванию дымовой смеси шариками. Третья часть дыма создается у земли, при ударе шариков о грунт и выбрасывании ими остатков жидкости. Сообщалось, что таким способом самолет может поставить за 25 сек. сплошную вертикальную дымовую завесу высотой 160 м.

Рассмотрим теперь взаимодействие светового излучения и непрозрачных тел. Падая на поверхность непрозрачного тела, световое излучение частично отражается и поглощается. Его поражающее действие определяется поглощенной частью световой энергии. Если она достаточно велика, то происходит сильное нагревание тела, а вследствие этого — обугливание, воспламенение, оплавление или прожиг.

Температура нагрева тел в большой степени зависит от коэффициента поглощения. Темные тела поглощают намного больше световых лучей, чем светлые. Так, черная краска поглощает 96 % падающего на тело светового излучения, белая — 18, белая ткань — 25, материал цвета хаки — 60, а черное сукно — 99 %. Значит, более стойкими к световому излучению будут материалы светлых тонов. Еще в Хиросиме и Нагасаки было замечено, что люди, одетые в белую или других светлых тонов одежду, получили менее сильные ожоги, чем одетые в темное.

Из школьного курса физики каждому известны такие свойства тел, как теплопроводность и теплоемкость. Они также способствуют большему или меньшему нагреванию материалов при воздействии светового излучения. Так, очевидно, чем больше теплопроводность и теплоемкость тела, тем больше требуется световой энергии, чтобы нанести ему поражение в той или иной степени. Свойством проводить тепло объясняется также то обстоятельство, что более толстое тело меньше поражается световым излучением. Установлено, например, что у тонких металлических пластин, таких, как обшивка самолета, температура нагрева обратно пропорциональна толщине. При световом импульсе, равном 100 кал/см2, и коэффициенте поглощения 0,25 дюралевая пластина толщиной 0,1 см получает прирост температуры примерно на 440°. Если же взять пластину толщиной 0,2 см, то прирост температуры будет в два раза меньше, то есть 220°. Таким образом, у более толстых тел за время их освещения часть тепловой энергии успевает распространиться на большую глубину.

Поделиться книгой

Оставить отзыв